客服手机:13061644116
电话咨询:021-64149583
邮件咨询:moli@microphotons.com
ZnSe 在红外元器件窗片透镜以及光谱分析ATR 棱镜领域有着广泛的应用。硒化锌(Zinc Selenide)对于CO2激光器的元器件也是一种良好的选择。在二氧化碳激光器工作的波段10.6 microns附近有着良好的透射率。硒化锌材料是一种黄色透明的多晶材料, 结晶颗粒大小约为70μm, 透光范围0.5-15μm。由化学气相沉积(CVD)方法合成的基本不存在杂质吸收, 散射损失很低。由于对10.6μm波长光的吸收很小, 因此成为制作高功率CO2激光器系统中光学器件的首选材料。 此外在其整个透光波段内, 也是在不同光学系统中所普遍使用的材料。
硒化锌材料对热冲击具有很高的承受能力, 使它成为高功率CO2激光器系统中的zui佳光学材料。硬度只是多光谱级ZnS的2/3, 材质较软易产生划痕, 而且材料折射率较大, 所以需要在其表面镀制高硬度减反射膜来加以保护并获得较高的透过率。在其常用光谱范围内, 散射很低。在用做高功率激光器件时, 需要严格控制材料的体吸收和内部结构缺陷, 并采用zui小破坏程度的抛光技术和zui高光学质量的镀膜工艺。
广泛应用于激光,医学,天文学和红外夜视等领域中。
透射波段范围 : |
0.6 to 21.0 um |
折射率: |
2.4028 at 10.6 um |
反射损耗: |
29.1% at 10.6 um
(2 surfaces) |
吸收系数: |
0.0005 cm-1at
10.6 um |
吸收峰: |
45.7 um |
dn/dT : |
+61 x 10-6/℃ at 10.6 um at 298K |
dn/du = 0 : |
5.5 um |
密度: |
5.27 g/cc |
熔点: |
1525℃ (see notes below) |
导热系数: |
18 W m-1 K-1at
298K |
热膨胀: |
7.1 x 10-6/℃at 273K |
硬度 : |
Knoop 120 with
50g indenter |
比热容量 : |
339 J Kg-1K-1 |
Dielectric
Constant : |
n/a |
Youngs Modulus
(E) : |
67.2 GPa |
Shear Modulus
(G) : |
n/a |
Bulk Modulus
(K) : |
40 GPa |
弹性系数 : |
Not Available |
Apparent
Elastic Limit : |
55.1 MPa (8000
psi) |
泊松比 : |
0.28 |
Solubility : |
0.001g/100g
water |
Molecular
Weight : |
144.33 |
Class/Structure
: |
HIP
polycrystalline cubic, ZnS, F43m |
光谱透射曲线:
折射率:(No = Ordinary Ray)
um |
No |
um |
No |
um |
No |
0.54 |
2.6754 |
0.58 |
2.6312 |
0.62 |
2.5994 |
0.66 |
2.5755 |
0.7 |
2.5568 |
0.74 |
2.5418 |
0.78 |
2.5295 |
0.82 |
2.5193 |
0.86 |
2.5107 |
0.90 |
2.5034 |
0.94 |
2.4971 |
0.98 |
2.4916 |
1.0 |
2.4892 |
1.4 |
2.4609 |
1.8 |
2.4496 |
2.2 |
2.4437 |
2.6 |
2.4401 |
3.0 |
2.4376 |
3.4 |
2.4356 |
3.8 |
2.4339 |
4.2 |
2.4324 |
4.6 |
2.4309 |
5.0 |
2.4295 |
5.4 |
2.4281 |
5.8 |
2.4266 |
6.2 |
2.4251 |
6.6 |
2.4235 |
7.0 |
2.4218 |
7.4 |
2.4201 |
7.8 |
2.4183 |
8.2 |
2.4163 |
8.6 |
2.4143 |
9.0 |
2.4122 |
9.4 |
2.4100 |
9.8 |
2.4077 |
10.2 |
2.4053 |
10.6 |
2.4028 |
11.0 |
2.4001 |
11.4 |
2.3974 |
11.8 |
2.3945 |
12.2 |
2.3915 |
12.6 |
2.3883 |
13.0 |
2.3850 |
13.4 |
2.3816 |
13.8 |
2.3781 |
14.2 |
2.3744 |
14.6 |
2.3705 |
15.0 |
2.3665 |
15.4 |
2.3623 |
15.8 |
2.3579 |
16.2 |
2.3534 |
16.6 |
2.3487 |
17.0 |
2.3438 |
17.4 |
2.3387 |
17.8 |
2.3333 |
18.2 |
2.3278 |
|
|
IR Polished Zinc Selenide (ZnSe) brewster angle prism
19.8 x 15 x 10mm brewster angle (67.7°) prism.
IR Polished Zinc Selenide (ZnSe) 60° prism
20 x 20 x 20mm 60° 等边色散棱镜
IR Polished Zinc Selenide (ZnSe) reflecting prism
38 (+0/-2) x 11(±1) x 11mm 120° / 30° / 30° prism
During Chemical Vapour Deposition the small crystallite grains align with the direction of growth, and are normal to the thickness of the sheet produced. For windows of normal thickness and aspect ratios the alignment of the grain therefore is rarely a problem as they are cut from the grown sheet such that within an optical window the grains align perpendicular to the surfaces. This is optimum orientation for lowest internal absorption and scatter.
With prisms, the cutting direction requires more consideration. It is recommended that the thickness of the strip material corresponds to the apex height of the prism. This ensures optimum crystallite orientation for most usual prism applications.
For typical 45° prisms the most obvious use of material is shown in (A) but it should be noted that this is not the optimum orientation.
The best choice is (B) and it also permits a higher limit on prism size or conversely allows thinner stock to be used. There is waste at the ends of the strip but this is small and so it may not be quite as economic as (A).
Cutting in direction (C) where the entire light beam runs at 90° to the grain
structure
should be avoided completely if at all possible. Note that maximum available
thickness of ZnSe and ZnS (FLIR) is approximately 60mm. Maximum available thickness
of ZnS Cleartran is approximately 30mm.